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A B S T R A C T

Sewage sludge properties vary with the origin and treatment method of the wastewater. When converting
the sewage sludge thermally for material and energy recovery, these properties affect the composition of the
products and the efficiency of the process. Rotary kiln gasifiers can handle these variations in the raw materials.
For further development, process integration, optimization of the process, upscaling, and industrial application,
it is helpful to understand and describe the impact of the sewage sludge properties on operating parameters
and product quality. This work analyses the impact of sewage sludge properties numerically using detailed
chemistry and the surrogate approach. Sewage sludge is described using woody biomass components, sugars,
lipids, proteins, inorganic species, moisture, and ash. The stochastic reactor model (SRM) is used to model
the gasification process. In contrast to ideal reactors, stochastic reactors allow for resolving inhomogeneity.
Hence, the predicted gas composition results from local temperature and available oxygen. For the analysis,
temperature, airflow rate, and fuel properties, i.e., the amount and composition of volatiles, including fuel-
bonded nitrogen and sulfur, and the moisture level are varied. Their results are analysed regarding the
produced gas composition, emission precursor formation, and cold gas efficiency of the process. The highest
efficiencies are found for temperatures of 1223 K and rich conditions. High concentrations of methane and
hydrogen accompany this maximum. However, the producer gas’s highest heating value is found at low
temperatures thanks to the presence of small hydrocarbons. Furthermore, a high volatile amount and a dry
feedstock favour methane and carbon monoxide formation. The hydrogen concentration is found to be sensitive
to the moisture content and is the highest at 30%. The cold gas efficiency is predicted to depend strongly on
the feedstock and varies for the same operating conditions up to 60%. With increasing fuel-bonded nitrogen
and sulfur content, the concentrations of NO and SO2 formation and their precursors increase, respectively.
The released ammonia leads to significantly reducing emitted NO through the ThermalDeNOx mechanism.
Overall, the generated maps provide a detailed insight in species formation and allows for the prediction of
process parameters sensitive to the sewage sludge properties.
1. Introduction

Sewage sludge is a byproduct of wastewater treatment of munici-
palities and industry. Hence, its emergence will further increase with
the world’s population, and it will accumulate in metropolitan areas.
Traditionally, sewage sludge has been used directly as fertilizer in
agriculture or via composting, thanks to its high nitrogen and phospho-
rus contents. However, sewage sludge contains components hazardous
to humans and the environment due to the wastewater’s various ori-
gins. Harmful contaminants are, among other inorganic compounds,
e.g., heavy metals [1–3] and organic substances, e.g., pesticides, phar-
maceuticals [4,5]. To avoid the emission of harmful substances in
the environment and recover the nutrition and energy content of the
waste stream, thermal treatment processes can be employed. Thermal
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treatment allows sterilization of the sludge, increases the concentration
of non-volatile species in the solid, and recovers the energy content.
Under oxygen exclusion and oxygen-poor atmospheres, sewage sludge
is converted to syngas, condensable species (tar), and a solid char-
rich fraction [6,7]. The resulting syngas and liquid can be used for
energy and heat supply or further upgraded in gas-to-liquid processes
[6]. The decontaminated char serves as fertilizer or is further treated
to recover phosphorus [8] and other inorganic components. All thermal
treatment processes require additional heat input to the system. How-
ever, comparing incineration, pyrolysis and gasification, the latter two
release fewer emissions (nitrogen and sulfur oxide and dioxins) [6,9].
Thus, sewage sludge pyrolysis and gasification are estimated to be more
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beneficial to implementable in the future circular economy and local
energy supply [7].

Frequently, fluidized bed gasifiers are applied to valorize sewage
sludge, and other bio-derived waste streams, e.g., [10–12]. Their use
is beneficial since fluidized bed converters provide fast mixing of raw
material and conversion atmosphere and hence provide good control
of the thermochemical pathways [6]. To allow larger variations of the
raw material properties, fixed bed gasifiers (downdrafts and updrafts)
are investigated, e.g., [13–15]. However, in both methodologies, the
high ash content of sewage sludge and its high elutriation rate of
fine material are obstacles to continuous operations due to increased
fluidized bed height, slagging, and clinker formation [16]. Thanks to
their continuous rotational motion that provides mixing of the raw
material and discharge of the char and ashes, rotary kilns offer a
solution related to the high ash formation by sewage sludge [16].
Hence, rotary kiln gasifiers have been investigated in lab-scale, and
pilot plants [6,9,16–19]. Furthermore, rotary kiln converters allow for
the conversion of materials with little or no pre-treatment, tolerating
large variations in fuel size and shape and heating value [6].

Numerical simulations can support further development towards
large-scale industrial applications by exploring a wide range of operat-
ing conditions, plant design, and the impact of the properties of the raw
materials. An estimation and insight on expected variations in product
streams and their quality, including emission, helps to design upgrading
units and evaluate their efficiency. Furthermore, the detailed knowl-
edge of the product gas composition allows for estimating the emission
formation in subsequent heat and power applications. These insights
are needed to develop reliable and sustainable energy supply solutions
and their integration into circular economy and energy clusters.

In order to use numerical simulations as a design tool, the modelling
needs to have a predictive character. For the thermal treatment of
sewage sludge, it is necessary to describe the variation in the feedstock
and its effect on the process and the product stream. Considering this,
detailed chemistry models paired with flexible surrogate models are
employed in this work. Detailed chemistry models offer the math-
ematical description of the devolatilization, heterogeneous reactions
and gas phase processes, such as the cracking of large molecules
and their oxidation. Surrogate models allow for a flexible numerical
representation of the feedstock. As a result, key characteristics of
the feedstock, here sewage sludge, and its gasification products can
be modelled [20]. The surrogate concept is state-of-the-art in liquid
and gaseous fuel modelling. For example, Diesel and gasoline fuels
that consist of hundreds of different species are represented by n-
heptane, and n-heptane/iso-octane mixtures, respectively and natural
gas is typically represented by pure methane. For solid feedstocks,
the surrogate representation typically combines several species. The
surrogate representation by Debiagi et al. [21] includes nine reference
species, including moisture and ash, and allows for the description
of around 500 biomass and waste fraction samples, such as woods,
grass plants, algae, and food industry wastes. Further models in the
literature describe the thermal conversion of the solid feedstock of
coal [22], woody [23–25] and algae biomass [26], municipal solid
waste [27] and sewage sludge [28]. The surrogate model for sewage
sludge represents the solid feedstock using different protein species,
lignocellulosic species, and species to release fuel-bonded nitrogen and
sulfur [28]. With the set of 15 species, the ultimate composition of
the sewage sludge samples and their moisture and ash content can be
formulated in close agreement [28]. In combination with the gas phase
mechanism, originally developed for municipal solid waste [27], the
further fate of the released tar, gas-species and NOx and SOx can be
modelled. In total, the chemical model consists of 15 surrogate species,
37 solid species, 41 devolatilization and heterogeneous reactions, 188
gas phase species and 3207 homogeneous gas phase reactions.

While such a detailed chemistry treatment is necessary to capture
dependencies on the feedstock and emission formation, it is too large
2

for efficient use in three-dimensional fluid dynamic simulations. On
the other hand, ideal zero-dimensional reactors have the benefit of
short simulations. However, they lack the detailed description of local
variations of temperature, available oxygen and species concentrations
that are essential for emission prediction. As a compromise between the
two types of simulations, the stochastic reactor model has been devel-
oped (introduced for solid fuel conversion in [29,30]), combining the
benefits of both. The zero-dimensional character of the models allows
to solve detailed chemistry schemes efficiently, and the discretization of
the reactor domain into dimensional ‘‘packages’’ or ‘‘particles’’ enable
to resolve the distribution functions within the reactor domain. Stochas-
tic reactor models can be used to calculate operating conditions maps
with low computation cost and provide the needed sensitivity towards
local temperature and species concentration for predicting species and
gas phase emissions.

This work aims to model and analyse the impact of the fuel proper-
ties (moisture content, volatile content, and ultimate composition) on
the expected product gas composition and cold gas efficiency of the
process. Moreover, the concentration of nitrogen and sulfur species is
analysed for various fuel samples and operating conditions to estimate
the potential of NOx and SOx formation in a consecutive incineration
stage. For the analysis, the surrogate approach and detailed chemistry
models for sewage sludge [27,28] are applied together with the stochas-
tic reactor model [29,30]. The models are applied and compared to a
rotary kiln experimental setup from literature [16].

The highlight of the presented study is the flexible representation of
sewage sludge in numerical simulations, which allows considering its
properties in simulations. Producer gas species and efficiency maps are
calculated for a matrix of temperatures and air–fuel equivalence ratios,
and 17 analysed sewage sludge samples and five moisture contents.
The devolatilization of nitrogen and sulfur species is modelled, and
the dependencies of NOx and SOx formation in the producer gas is
analysed.

The paper is structured as follows: first, the used chemistry, the
stochastic reactor model approach and the experimental setup are in-
troduced. The following results section presents the model’s validation
against the experiment, the impact of temperature and equivalence
ratio on the cold gas efficiency (CGE), followed by the impact of the
feedstock on product quality and CGE, and last, the formation of NOx
and SOx precursors for all operating conditions. In the end, several
important conclusions are summarized.

2. Methodology

2.1. Chemical model

The chemical model consists of three parts: a set of surrogate
species to describe sewage sludge mathematically [28], a multistep
reaction scheme including devolatilization reactions and heterogeneous
reactions of gas-phase and char [28], and a description of the gas phase
using detailed kinetics [27].

The elemental and macro-molecular composition of sewage sludge
varies widely: the volatile content lies between 40 and 60 wt% of
the dry matter (including ash) [28,31] consisting of lignocellulosic
compounds (∼ 30 wt% lignins, ∼ 10 wt% cellulose, < 5 wt% hemicellu-
lose [2]), proteins (18–40 wt% [2]), sugars, oil, grease, and others [2,
32]. Based on these commonly found components, surrogate species
have been selected for the numerical representation of sewage sludge.
The surrogate species are adopted from wood [24], algae biomass [33],
and municipal solid waste [27]. Herein, protein species enable to model
the release of fuel-NO precursors. Furthermore, species to account for
gas release by inorganic components model the release of sulfur species
and further release of ammonia and carbon dioxide [27]. All surrogate
species and their elementary composition are listed in Table 1. Sur-
rogates are formulated using sewage samples’ ultimate composition,

ash, and moisture content as the target for a linear least-squares fit.
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Table 1
Surrogate species for the representation of sewage sludge [28].

Surrogate species Representation Elementary composition

C H O N S Si

CELL Cellulose 6 10 5 0 0 0
HCE Hemicellulose 5 8 4 0 0 0
LIGC Lignin rich in C 15 14 4 0 0 0
LIGH Lignin rich in H 22 28 9 0 0 0
LIGO Lignin rich in O 20 22 10 0 0 0

SUGAR Monosaccharide 6 8 6 0 0 0
LIPID Lipids 18 32 2 0 0 0

PROTH Protein rich in H 400 900 150 86 0 0
PROTC Protein rich in C 500 450 65 80 0 0
PROTO Protein rich in O 250 500 200 72 0 0

NH3I Product gas inorganic nitrogen 0 3 0 1 0 0
CO2I Product gas inorganic carbon 1 0 2 0 0 0
(H2S SO2 COS)I Product gas inorganic sulfur 1 2 3 0 3 0

H2O(S) Moisture content 0 2 1 0 0 0
ASH Ash content 0 0 0 0 0 1
As additional constraints, fixed ratios of the lignocellulosic compounds
are set [21,34].

The corresponding reaction scheme consists of apparent reactions
in Arrhenius formulation with up to four intermediate steps. Hereby,
the surrogates are stepwise decomposed, yielding partially decomposed
solid species, char, tar and gas species tar. Tar species include molecules
up to C11, single and double aromatics, and nitrogen-containing cyclic
species [27].

Detailed decomposition reactions describe their break-up under
thermal stress with and without available oxidizers and their inter-
action with other gaseous species. This complex description allows
modelling their breakdown to small hydrocarbons and products, such
as CO2, CO, H2, H2O, and others, sensitive to local conditions. This
capability is needed for predicting the amount and speciation of the
product gas and tar yields sensitive to the feedstock, local tempera-
ture, available oxidizers, and radical pool. This flexibility is essential,
especially at low airflow rates that limit the oxidation of the tar and
gas species, e.g., in the transition regime from pyrolysis to gasification,
and for the analysis of different gasification agents, such as air and
steam. The zero-dimensional model framework enables treating the gas
phase chemistry in detail, typically only resolved in ideal reactors.
The combination of the resolution of the temperature and species
space (Section 2.2) and the detailed reaction mechanism allows moving
towards predicting simulations and analysing the gas and tar species
dependent on the feedstock and local conditions in the reactor. For
emission prediction, the nitrogen and sulfur chemistry by Glarborg and
coworkers are included [35–37]. The scheme includes fuel-, thermal-
and prompt-NO pathways, and reactions for the oxidation of sulfur
species and their interaction with nitrogen oxides. The mechanism
consists of 188 gas-phase species and 3207 reactions [27].

2.2. Numerical model

The stochastic gasification model available in LOGEreserach ver-
sion 1.10 [29] is applied for all simulations. It allows for resolving
devolatilization, heterogeneous reactions of solid and gas phases, and
homogeneous reactions in the gas phase. The model is formulated in
a zero-dimensional framework using the Probability Density Function
(PDF) approach, and the reactor volume is discretized using stochastic
non-dimensional particles. Each particle is described by the content of
three phases (the solid phase, the pore gas in the solid and the laminar
boundary layer, and the bulk gas), its energy content, and the species
compositions of the three phases (Fig. 1). Each stochastic particle
undergoes an individual temperature history over the simulation time.
The temperature of a stochastic particle can change by heat transfer
with the hot reactor wall, radiation, mixing of the bulk gas phase
3

with another stochastic particle, and chemical reactions [29,30]. The
selection of particles for heat transfer and mixing is stochastic. The
mixing step can increase or decrease the available oxidizer in one
stochastic particle or exchange highly reactive species, such as radicals,
from one stochastic particle to another. The local temperature and
available gas phase species affect the local reactions and hence species
pool and vice versa. Hence, during the simulation, the distribution of
bulk gas, pore gas, and solid phase temperature and of the species
in each phase over all stochastic particles are resolved. Due to the
zero-dimensional character of the model, the physical space is not
resolved; however, the temperature and species space are resolved and
represent the inhomogeneous fields within a pyrolysis or gasification
device. This inhomogeneous temperature and species profile is a typical
characteristic of stochastic reactor models and allows, opposite to
ideal reactors, their use for the analysis of local phenomena, such as
species decomposition and emission formation [38]. For the stochastic
gasification model, this capability has been demonstrated within the
analysis of species, and temperature distributions in each gasification
reactor and the fuel bed of a grate-fired incineration plant [39].

The calculation of the devolatilization rates and heterogeneous
reactions provides source terms for the gas phase and is used to model
the consumption of the solid. The further decomposition and oxidation
of the released gas and tar species are predicted based on a detailed
gas-phase mechanism [29,30].

Heat and mass transfer are modelled by the mixing of the bulk
gas and interaction between the two gas phases. In the model, the
pore gas exchanges heat and mass with the bulk gas determined by
Nusselt and Sherwood laws [29,30]. In the mixing step, only the bulk
gas (species and enthalpy) is mixed with another particle and mimics
the convective mass transport and the associated heat transfer. Further,
radiation between the reactor wall and particles is calculated according
to the Stefan–Boltzmann law, using the emissivity and temperatures of
both phases [29,30].

The stochastic mixing of the bulk gas between stochastic particles
models the turbulence of the gas phase and is determined by the
mixing time. Low mixing processes, such as grate-fired and fixed bed
applications, are represented using one mixing event per numerical
time step, i.e., a scalar mixing time 𝜏𝑚𝑖𝑥 of 1 s [39]. For example, a
highly turbulent flow, present in entrainment flow gasifiers, is modelled
using mixing times between 0.001 to 0.05 s [29,39].

The here applied stochastic gasification model can be used in dif-
ferent configurations: as a series of partially stirred reactors with one
gas and fuel inlet in the first reactor, a partially stirred plug flow
reactor, or connected to a reactor network model with multiple gas
and solid stream inlets [29,30,39]. Depending on the provided chemical
model and operating conditions, such as air feed rare and heat transfer
from the boundaries, it allows to model pyrolysis, gasification, and

combustion applications [27,30,39].
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Fig. 1. Illustration of the experimental setup by Freda et al. [16] (top) and its numerical representation using the stochastic reactor model in plug flow configuration (bottom).
2.3. Numerical setup

The presented analysis is based on the experimental results of Freda
et al. [16]. They performed measurements of the thermal treatment of
partially dried sewage sludge for pyrolysis and gasification conditions.
The sewage sludge is converted using a bench-scale rotary kiln gasifier
employing air as the gasification agent. The kiln is illustrated in Fig. 1.
The kiln has a total length of 1550 mm and an inner diameter of
80 mm. The heat for gasification is provided electrically over a length of
610 mm. Freda et al. [16] studied different operating conditions. For
the presented numerical analysis, the gasification condition with the
highest achieved cold gas efficiency is chosen: a temperature of 1123
K, an air–fuel equivalence ratio 𝜆 = 0.16 with a solid feedstock feed
of 237 g/h and the air flow rate with 3 Nl/min. For these conditions,
the rotary kiln yields a dry produced gas with a lower heating value
(LHV) of 7.9 MJ/Nm3

𝑑𝑟𝑦 and a cold gas efficiency (CGE) of 67% in the
experiment [16]. Overall, those authors concluded that the apparatus
yields a relatively clean, dry producer gas consisting mainly of CO, H2,
CH4, and CO2.

The stochastic reactor model is run in a plug flow configuration
(Fig. 1) to replicate the rotary kiln gasifier. The sewage sludge surrogate
and corresponding air flow rate are fed to the reactor inlet. The mixing
time, an optimization parameter, is set to 0.033 s. This value corre-
sponds to the kiln rotational speed of 2 rpm and classifies the mixing
as low compared to other applications, as discussed above. The sewage
sludge sample analysed by Freda et al. [16] is reproduced using the
above-introduced surrogate species and the linear-least square method.
The authors further state that the sewage sludge had to be partially
dried to prevent the rotary kiln from clogging in the experiment [16].
In the present simulation study, a moisture content of 20 wt% is found
to be most plausible during the model calibration. This surrogate is in
the following, denoted with the ID 0. Other surrogates (‘‘1’’ to ‘‘17’’)
based on the experiments by Gomez-Rico et al. [31] are formulated
to analyse the impact of various sewage sludge samples. All employed
sewage sludge surrogates are compared to their ultimate composition
of the sample in Table 2. Their formulation is further discussed in [28]
4

and here reported for the readability of the paper. The speciation of the
surrogates is further shown in Fig. 2.

The presented study aims to analyse the cold gas efficiency (CGE),
defined as

𝐶𝐺𝐸 =
𝐿𝐻𝑉𝑔𝑎𝑠 × 𝑔𝑎𝑠 𝑦𝑖𝑒𝑙𝑑

𝐿𝐻𝑉𝑠𝑜𝑙𝑖𝑑
. (1)

where the lower heating value of the gases is calculated in MJ/m3

of dry producer gas, the gas yield is given as m3 dry gas per kilo
solid feedstock, and the lower heating value of the solid in MJ/kg.
Moreover, the producer gas composition over a variation in operating
conditions (temperature and equivalence ratio) and feedstock (sewage
sludge surrogates and moisture content) is investigated. The experi-
mental condition (T = 1123 K, 𝜆 = 0.16), as described above, serves
as the base case since it has the highest CGE in the experiments. The
simulation matrix for the operating conditions is set to:

• Wall temperature: 923 to 1223 K in 50 K steps;
• Air–fuel equivalence ratio 𝜆: 0.1 to 0.4 in 0.025 steps.

And the feedstock variation matrix is set to:

• Feedstock: surrogate 1 to 17 (Table 2 and Fig. 2);
• Moisture content (mass%): 10 to 50% in 10% steps.

The hot temperature boundary is set to the aimed ambient temper-
ature 1123 K for the temperature variation. The airflow is adjusted
to adjust the equivalence ratio to the desired ratio of solid feedstock
and air, while the solid feedstock remains in all simulations constant
(237 g/h). For the variation of the sewage sludge surrogate, the solid
feed boundary is replaced by the surrogate specifications from Fig. 2.
The shown compositions are linearly mixed with the surrogate species
H2O(S) to mimic variations in moisture content. Also, for these varia-
tions, the fuel boundary mass flow is the same for all simulations. Due
to the differences in lower heating values (LHV), ultimate composition
and ash content of the surrogates, the constant mass flow leads to
variations in the energy flow into the system and slight variations
in the element-based equivalence ratio, here in terms of amount and
composition of the volatile matter versus gasification air. This shift
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Table 2
Ultimate composition analysis (UCA) of sewage sludge samples reported by Freda et al. [16] (ID 0) and by Gomez-Rico et al. [31] (ID 1 – 17) and their surrogate representation
[28]. Values denote mass percentages in the dry fuel, including ash. The oxygen mass concentration is given by difference. Lower heating values (LHV) are calculated using the
correlation of Channiwala and Parikh [40].

ID UCA measurement Surrogate representation

C H N S Ash C H N S Ash HV
(wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) MJ/kg

0 41.2 5.22 3.21 – 29.7 40.9 5.22 3.21 – 29.7 16.5
1 41.2 6.10 3.60 0.83 24.0 40.8 5.75 3.70 0.80 24.0 17.9
2 25.1 3.90 2.70 2.50 40.0 25.1 3.90 2.70 2.50 40.0 12.4
3 40.8 6.10 3.10 0.71 27.0 40.3 5.48 3.28 0.66 27.0 18.9
4 38.5 6.00 3.90 1.20 26.0 38.2 5.65 4.00 1.17 26.0 16.7
5 35.3 5.10 2.90 0.90 36.0 34.9 4.80 2.98 0.88 36.0 18.5
6 31.1 4.10 1.90 0.71 40.0 30.8 4.11 1.90 0.71 40.0 17.6

7 37.3 5.70 3.60 1.30 30.0 36.9 5.32 3.70 1.27 30.0 17.3
8 29.3 4.30 2.50 0.56 37.0 29.2 4.31 2.50 0.56 37.0 14.6
9 42.0 6.30 4.40 1.50 25.0 41.4 5.73 4.45 1.32 25.0 17.9
10 35.9 5.50 6.20 4.20 30.0 35.7 5.41 6.21 4.17 30.0 14.3
11 40.5 5.90 2.10 0.52 21.0 40.2 5.52 2.21 0.49 21.0 17.8
12 28.5 4.70 4.60 1.50 37.0 28.4 4.70 4.60 1.50 37.0 12.1

13 32.0 4.60 2.10 0.69 38.0 31.7 4.43 2.15 0.68 38.0 17.6
14 26.3 4.20 3.40 1.20 44.0 26.2 4.20 3.40 1.20 44.0 13.9
15 19.8 2.80 2.10 2.80 55.0 19.7 2.80 2.10 2.80 55.0 13.2
16 24.8 3.90 3.20 1.30 49.0 24.7 3.90 3.20 1.30 49.0 14.7
17 24.4 3.40 1.90 0.78 54.0 24.1 3.36 1.91 0.78 54.0 17.9
Fig. 2. Composition of the surrogates corresponding to Table 2.
in equivalence ratio increases with simulated moisture content since
the corresponding mass (volatiles and ash) are replaced by the water
content.

3. Results and discussion

3.1. Validation of the modelling approach

The experiment by Freda et al. [16] is reproduced using the sewage
sludge sample ‘‘0’’ for model validation. The predicted yield of the
different product fractions, lower heating value (LHV) of the product
gas, and the cold gas efficiency (CGE) are shown in Fig. 3 and from the
experiment available species concentrations in Fig. 4. For this compar-
ison, all species with a molar mass larger than benzene are collected
to calculate the tar yield. The model captures the distribution of the
different product fractions (char, gas, tar, and water). The tar yield is
overpredicted. The higher predicted tar mass leads to slight underpre-
diction of the main gas-phase products (carbon dioxide CO2, carbon
monoxide CO, hydrogen H2, and methane CH4). In the simulation, tar
is not further decomposed due to a lack of available oxygen. The gas
yield, LHV, and cold gas efficiency are considered well reproduced. The
concentrations of the main gas products and other small hydrocarbons,
ethane C H and propane C H (no formation in the experiment, <
5

2 6 3 8
1 ppm in the simulation) are well predicted. The model’s capability
to reproduce trends in varying gasification agents and temperature for
this specific apparatus has been demonstrated as part of the reaction
mechanism development [28] and hence not further discussed here.
The here shown prediction and previous validation allow using the
numerical setup for the aimed numerical study towards the impact of
fuel properties on gas quality and process efficiency.

3.2. Impact of operational parameters

The results for gas yield, lower heating value (LHV) of the dry
producer gas, and the cold gas efficiency (CGE) of the process for the
temperature and airflow rate (air–fuel equivalence ratio) are shown in
Fig. 5. The air–fuel equivalence ratio is calculated here based on the
elements rather than the fuel and oxidizer mass flows. In this way,
oxygen atoms bonded in the surrogate species are also accounted for
their oxidation capacity.

The simulated process produces more gas with increasing tempera-
ture and available oxygen. This result is consistent with the experimen-
tal findings by Freda et al. [16] and the phenomenological knowledge
of the gasification process, where higher temperatures and higher
available oxidizers lead to increased char and tar conversion. Both
processes lead to a higher gas formation. In Fig. 6, it can be seen that
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Fig. 3. Prediction of process characteristics at 1123 K and 𝜆 = 0.16. If applicable, values refer to the dry gas at normal conditions.
Source: Experimental results from Freda et al. [16].
Fig. 4. Prediction of species concentrations at 1123 K and 𝜆 = 0.16.
Source: Experimental results from Freda et al. [16].
Fig. 5. Prediction of amount and energetic quality over the analysed fuel–air ratios and ambient temperatures.
this increased gas formation is largely due to the formation of carbon
dioxide CO2 as the product of char oxidation and other gasification
end products, such as methane and hydrogen that result from the
further decomposition of hydrocarbons. The lower heating value of the
producer gas has a maximum at the lower temperature range and the
lowest analysed equivalence ratio (Fig. 5). This maximum is co-located
with the maximum of CO and hydrocarbons in the range of C2 to C6.
In Fig. 6, ethane C2H6 is shown exemplary. The high concentrations
of hydrocarbons (C2 to C6) increase the heating value significantly.
The decrease of the heating value with increasing temperature and air
supply aligns with measurements [16].

The CGE, which is a combination of the amount of produced gas,
its lower heating value and the energy content of the feedstock, in-
creases with temperature for all analysed airflow rates. This increase
is mainly attributed to the increase in produced gas. The maximum
CGE is accompanied by the maximum concentrations of methane and
hydrogen. With increasing temperature and hence electric energy input,
6

the larger hydrocarbons get further decomposed, and CO is converted
to CO2. The additional oxygen origins from fuel-bonded oxygen freed
during further decomposition of oxygenated hydrocarbons and from the
dissociation of water. The dissociation of water also allows a higher
formation of hydrogen at high temperatures. Fig. 6 also shows the
wet volume concentration of water. The significant decrease of water
concentration with increasing temperatures and equivalence ratios are
caused by the thermal dissociation and by dilution of the mixture with
increasing gas production, e.g. due to the increasing concentration
of CO2. For 1223 K and 𝜆 = 0.1, a CGE > 75% is predicted. This
high efficiency is mainly caused by the increased hydrogen production
and the energy input via the electric heating system, which is not
considered during the CGE calculation. In summary, the model well
predicts the trends with increased temperature and air feed rate. The
use of the detailed chemistry approach allows an understanding of the
conversion behaviour of the released hydrocarbons. The maps allow
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Fig. 6. Prediction of main gas components over the analysed fuel–air ratios and ambient temperatures.
finding the optimum in lower heating value, species concentrations and
CGE for the targeted further use of the producer gas.

3.3. Impact of fuel properties

The same operating conditions are calculated for all sludge samples
reported in Table 2. The dry ash-including surrogates (Fig. 2) are lin-
early combined with the surrogate species H2O(S) to achieve surrogates
with moisture contents between 10 and 50 wt%. The mass flow rate
of the solid feedstock and the airflow rate are kept constant for the
simulation of the different samples. The constant solid mass flow leads
due to the different heating values of the sewage sludge samples to a
variation in the volatile and energy content. The different surrogates
have further small variations in the stoichiometric air demand due
to the variation in the fuel-bonded oxygen and total volatile amount.
These variations in the surrogates lead to slight variations in the
elemental air–fuel equivalence ratio and have to be considered during
the interpretation of the results. The resulting differences of the product
gas are the core of this analysis. The predicted concentrations of the
main species in the produced dry gas, the corresponding lower heating
value, and the gained cold gas efficiency are shown in Figs. 7 and 8. For
these figures, the surrogates are ordered descendingly after the carbon
content in the dry ash-including surrogate. The carbon content in the
dry ash-including surrogate, also correlates with the amount of volatile
matter.

The predicted maximum concentrations of methane (CH4) and car-
bon monoxide (CO) are found for the sewage sludge surrogate with the
highest carbon content in the dry ash-including surrogate (Fig. 7). From
this maximum, the concentrations decrease with lower carbon content
and volatile matter over the surrogate samples and moisture content.
In the presented study, the moisture is added to the dry ash-including
surrogate; hence, the volatile matter is reduced with increasing mois-
ture content. The reduction of volatile matter with changing surrogate
and moisture content enhances the formation of carbon dioxide CO2
(Fig. 7). The surrogates with ID 15 to 17 are characterized by low
carbon and high ash content. Hence, the stoichiometric air demand
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per kilogram sewage sludge surrogate is lower. This leads to a shift in
the element-based equivalence ratio to leaner conditions. As a result,
more carbon is fully oxidized. The same shift in equivalence ratio is
caused by adding moisture content at constant surrogate inflow; hence,
more CO2 is formed with increasing moisture content. Moreover, with
increasing moisture content, more water is dissociated at these high
operating temperatures. This dissociation provides additional oxidizer
to the system and is accompanied by an increase in hydrogen formation
(Fig. 7). However, the hydrogen concentrations first increase slightly
until 30wt% moisture and decline for higher moisture contents. The
hydrogen formation is affected by the available water, but also by
the decreasing volatile amount and hence fuel-bonded hydrogen. The
predicted species trends in Fig. 7 agree with the measurement of similar
processes reported by Chun et al. [19], and Xiong et al. [41].

The differences in species concentrations for the different sewage
sludge samples also affect the amount of produced gas, its heating
value and hence the cold gas efficiency of the gasifier. As shown in
Fig. 8, with high carbon and volatile content (surrogates 9, 1, 3, 11)
the highest gas production is predicted for the dry surrogate (10%
moisture). This gas release is accompanied by a high lower heating
value that is caused by the maximum concentrations of methane, other
small hydrocarbons and carbon monoxide CO. The fuel properties (low
carbon and low volatile content) that lead to the maximum CO2 forma-
tion result in the lowest gas release and heating value. The maximum
cold gas efficiency is found at the maxima of gas production and LHV.
Furthermore, high efficiencies are also found for increasing moisture
contents caused by the increase in hydrogen formation. Surrogates 9,
1, 3, 11 and 4 have higher volatile contents than the sewage sludge
analysed in the experiments, denoted with 0 in Table 2. This leads to
the prediction of CGE > 80%. On the lower end, for surrogates with low
volatile contents and a high moisture content CGE ≈ 30% is calculated.
This is caused by the lower amount of energy-containing matter and the
high energy demand of drying.

The significant variation in sewage sludge properties is well known
and considered one of the challenges in the operation of sewage sludge
gasification. The presented analysis shows that the flexible surrogate
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Fig. 7. Prediction of main gas components over the analysed surrogate compositions
and moisture contents. Surrogate samples in descending order after carbon content in
the dry ash including surrogate.

formulation based on the properties of the feedstock reproduces vari-
ations in the producer gas composition. With this, the results are
sensitive to fuel properties (amount of fuel bonded elements, ash con-
tent and moisture content) and related changes in the equivalence
ratio and oxidizing atmosphere (water concentrations). As a result, the
change in producer gas amount and quality is predicted. The variation
in CGE of 40 to 90% is significant. However, considering the difference
in the lower heating value of the analysed sewage sludge samples
this difference is plausible. Based on the presented results, a techno-
economical or exergy analysis of the system can be carried out. This
information is essential for the design process of a gasification plant
and will be part of future work.

3.4. Gas phase emissions

The detailed formulation based on the ultimate component analysis
allows studying the release of nitrogen oxides NO and sulfur oxides
8

𝑥

SO𝑥 for the analysed conditions. In the employed model, fuel-bonded
nitrogen is released in the form of ammonia NH3, hydrogen cyanide
HCN, as nitrogen-containing tar species (pyridine and pyrrole) and
directly as nitrogen oxide. Depending on the operating conditions
(available oxidizer and temperature), the tar species are further de-
composed to form small hydrocarbons, NH3 and HCN. The commonly
known fuel-NO precursors NH3 and HCN contain the largest amount
of the released nitrogen during devolatilization. Ammonia has a key
role in fuel-NO formation since it acts as NO precursor, but also as
a reduction agent [42–44]. Ammonia’s ability to reduce NO is used
in the ThermalDeNO𝑥 applications [42,45]. The double role of NH3
can be observed in Fig. 9. This figure shows the release of NO and
its precursors over the analysed temperature and equivalence ratio
matrix. HCN, as a species directly released from the solid matter and a
decomposition product, is primarily formed under rich conditions. With
higher temperatures and further devolatilization of the char and de-
composition of the nitrogen-containing tar, the concentration increases
with temperature. With leaner conditions, HCN gradually oxidizes and
forms NO and other products. The concentration of ammonia has
its maximum under rich conditions and low temperatures. NO has a
significant high formation at the lowest temperature, and low predicted
concentrations at the higher temperature range. The significant differ-
ences in NH3 and HCN behaviour and the maximum NO concentration
at low temperatures are connected via the ThermalDeNO𝑥 mechanism.
ThermalDeNO𝑥 mechanism is used in selective non-catalytic reduction
for flue gas cleaning. For this NH3 is injected into the flue gas where it
reduces NO with the global reaction [45]:

4NO + 4NH3 + O2 → 4N2 + 6H2O (2)

Considering the elemental reactions, the key role of the NH𝑖 radicals
in the reduction process becomes evident [42,43]. The ThermalDeNO𝑥
mechanism is well studied, and its dependencies are know [42]: (1) The
process has a narrow effective temperature window between 1100 K
and 1400 K. (2) Moreover, molecular oxygen must be available. (3) The
presence of hydrogen shifts the effective temperature range to lower
temperatures. (4) Too high concentrations of NH3 and water inhibit the
reduction process. In the simulations (Fig. 9), during devolatilization
and tar break-up at higher temperatures, NH3 and NO are released
to the gas phase. At higher temperatures, the present NH3 effectively
reduces the NO to nitrogen N2. The reduction process is enhanced
with the leaner conditions so that at 1223 K and 𝜆 = 0.4, all NH3 is
consumed. The present hydrogen (Fig. 6), shifts the reduction window
to lower temperatures so that the highest NO concentrations are found
at 923 K to 973 K. With lower concentrations of hydrogen and ammonia
for increasing equivalence ratio, the reduction potential reduces for the
lower temperature range.

The NO presence at low temperatures further gives insight into the
active NO formation pathways. At these low temperatures, the fuel-NO
pathways is the most contributing, while the maximum temperatures
are too low to activate the thermal-NO pathway. The contribution
from the prompt NO pathway is low, which is in accordance with
assumptions in previous literature [43].

Fig. 10 shows the release of NO and its precursors over the analysed
surrogates and moisture contents. In this figure, the surrogates are
shown with descending fuel-bonded nitrogen content. With higher ni-
trogen content in the surrogates, higher concentrations of NH3 and HCN
are predicted. Since the simulations in these figures are performed at
the same temperature and air feed rate, the reduction potential of NO is
comparable. An elevated concentration of NH3, for example, surrogates
17, 6, 14 and 9, leads to lower NO presence. NO concentrations increase
with moisture content. Water presence affects NO in two ways, it
inhibits the reduction via NH3 and its radicals and provides further
oxidizer by dissociating that promotes NO formation. Overall, at the
considered operating conditions, the level of NO in the producer gas is
much lower than that of NH and HCN.
3
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Fig. 8. Prediction of energetic quality over the analysed surrogate compositions and moisture contents. Surrogate samples in descending order after carbon content in the dry ash
including surrogate.

Fig. 9. Prediction of fuel NO and its precursors in the produced gas over the analysed fuel–air ratios and ambient temperatures.

Fig. 10. Prediction of fuel NO and its precursors in the produced gas over the analysed surrogate compositions and moisture contents (bottom row). Surrogates ordered descending
after the nitrogen content in the dry ash including composition.
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Fig. 11. Prediction of SO2 and its precursors in the produced gas over the analysed fuel–air ratios and ambient temperatures.
Fig. 12. Prediction of SO2 and its precursors in the produced gas over the analysed surrogate compositions and moisture contents. Surrogates ordered descending after the sulfur
content in the dry ash including composition.
Sulfur is released in the form of three species in the model: carbonyl
sulfide COS, hydrogen sulfide H2S and sulfur dioxide SO2. Fig. 11 shows
their prediction over the temperature and equivalence ratios. Their con-
centrations in the gas phase are the highest at high temperatures and in
rich conditions. Opposite to the considered hydrocarbons and nitrogen
species, the model contains no sulfur-containing tar species. Hence, the
further decomposition with increased available oxidizer does not in-
crease their composition (compare HCN in Fig. 9). However, the further
thermal decomposition of the solid yields more sulfur species. Their
concentration is diluted with increasing oxidizer and gas yield (Fig. 8).
Carbonyl sulfide COS is released equimolar to hydrogen sulfide H2S and
sulfur dioxide SO2. Anyhow, the COS concentration in the producer
gas is significantly lower. Compared to the other sulfur species, COS
is unstable and reacts with oxidizing species to form CO and radicals,
such as S and SH. This results in an increased H2S formation and, at low
temperatures, a slight increase in COS concentration due to the high
CO concentrations and its inhibiting character as the products of the
decomposition reactions. The higher concentration of H2S than other
sulfur species is typically found in biomass and bio-originated waste
streams.

Fig. 12 shows the prediction of the main SO2 and its main precursors
over the analysed surrogates of the sludge samples and moisture con-
tents. More sulfur species are released with higher sold-bonded sulfur
in the surrogate (Surrogates 11, 8 and 13). The replacement of the dry
ash-containing fuel with moisture leads to a lower feed of sulfur to the
10
system and hence a lower concentration of the sulfur species in the gas
phase. With decreasing sulfur content in the surrogate, fewer precursors
and SO2 are found in the gases. However, there is no direct connection
between the sulfur content and the amount of volatile matter observed
for carbon. So, while the absolute amount of sulfur on the mass base
decreases from Surrogate 11 to 10, the concentration of the sulfur
species varies slightly due to variations in the gas yield.

Even though not in detail discussed in the present work due to their
low concentrations, the emission models also include other oxides such
as NO2, N2O, SO and SO3. Hence, the detailed information on NO𝑥, SO𝑥
and their precursors can indicate needed producer gas cleaning units.
Furthermore, the detailed producer gas compositions are a valuable
input for the analysis of the further use of the producer gas in a
subsequent energy recovery stage. The impact of the present nitrogen
and sulfur species on the emission formation during incineration is
investigated in further analysis by the authors [46].

4. Conclusion

The combination of a detailed chemistry scheme and a stochastic
reactor model is used to model the gasification of sewage sludge in
a rotary kiln. The varying chemical composition and energy content
of sewage sludge is modelled using a surrogate approach. The impact
of gasification operation parameters and fuel properties is analysed in
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terms of producer gas quality, cold gas efficiency of the process and gas
species formation.

It is found that the model well predicts the trends with increas-
ing temperature and air feed rate. The model and presented analysis
allow an understanding of the conversion behaviour of the released
hydrocarbons and the complex nitrogen chemistry.

The gas composition of the produced gas and hence its lower heat-
ing value and the cold gas efficiency of the process are impacted largely
by the fuel properties. The highest methane and carbon monoxide
compositions are found for dry sludge surrogates with high volatile
content and high carbon dioxide formation for wet sludge with low
volatile content. The increase of moisture content leads to a reduction
in the lower heating value of 30%. The cold gas efficiency varies
between sludge samples up to 60%.

The release of nitrogen and sulfur species increases with the content
of these elements in the fuel, and high moisture contents lead to a lower
formation of the emission precursors.

The generated maps over various operating conditions allow finding
the optimum in lower heating value and species concentrations, such
as hydrogen H2 and cold gas efficiency. The results can be used within
the design process of gasification plants to account for high efficiency
and favourable composition for the targeted further use of the producer
gas. The knowledge of the variability with the solid feedstock helps
to understand expected maxima and minima in efficiency but also
targeted products and emission formation. These details can be used
as input during cost estimation and for the design of process control.

Future work will address the calculation of the exergy balance of the
processes and the use of the producer gas. Herby, further upgrading of
the producer gas and its direct use in incineration will be investigated.
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